8/31/07

Generalizing Hindley-Milner Type Inference Algorithms

This is a small ocaml experiment which follows "Generalizing Hindley-Milner Type Inference Algorithms".

Please, expect some bugs. It is a small study for my forthcoming -polite cough- language, which has a more elaborate sequent-calculus based type inferencer.


(********************************************************************)

let string_eq: string -> string -> bool =
function s0 -> function s1 -> compare s0 s1 == 0

(********************************************************************)

let rec list_concat: 'a list -> 'a list -> 'a list =
function xx -> function yy -> match xx with
| [] -> yy
| (x::xx) -> x::(list_concat xx yy)

let list_prepend: 'a -> 'a list -> 'a list =
function x -> function yy -> list_concat [x] yy

let list_postpend: 'a list -> 'a -> 'a list =
function xx -> function y -> list_concat xx [y]

let rec list_map: ('a -> 'b) -> 'a list -> 'b list =
function f -> function xx -> match xx with
| [] -> []
| (x::xx) ->
let y = f x in
let yy = list_map f xx in
y::yy

let rec list_member: ('a -> 'a -> bool) -> 'a list -> 'a -> bool =
function eq ->
function xx -> function e -> match xx with
| [] -> false
| (x::xx) -> if eq e x then true else list_member eq xx e


let rec list_union: ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list =
function eq ->
function xx -> function yy -> match xx with
| [] -> yy
| (x::xx) -> if list_member eq yy x then (list_union eq xx yy)
else x::(list_union eq xx yy)

let rec list_intersection: ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list =
function eq ->
function xx -> function yy -> match xx with
| [] -> []
| (x::xx) -> if list_member eq yy x then x::(list_intersection eq xx yy)
else (list_intersection eq xx yy)

let rec list_difference: ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list =
function eq ->
function xx -> function yy -> match xx with
| [] -> []
| (x::xx) -> if list_member eq yy x then (list_difference eq xx yy)
else x::(list_difference eq xx yy)

let rec list_subset: ('a -> 'a -> bool) -> 'a list -> 'a list -> bool =
function eq ->
function xx -> function yy -> match xx with
| [] -> true
| (x::xx) -> if list_member eq yy x then list_subset eq xx yy
else false

let rec list_eq: ('a -> 'a -> bool) -> 'a list -> 'a list -> bool =
function eq ->
function xx -> function yy ->
(list_subset eq xx yy) && (list_subset eq yy xx)

let rec list_flatten: 'a list list -> 'a list =
function ll -> match ll with
| [] -> []
| l::ll -> list_concat l (list_flatten ll)

let (++) = list_concat
let (+<) = list_postpend
let (>+) = list_prepend

(********************************************************************)

let list_domain: ('a * 'b) list -> 'a list =
function xx -> list_map (fun (x,y) -> x) xx

let list_range: ('a * 'b) list -> 'b list =
function xx -> list_map (fun (x,y) -> y) xx

(********************************************************************)

let rec flatten_strings: string list -> string =
function ss -> match ss with
| [] -> ""
| (s::[]) -> s
| (s::ss) -> s ^ ", " ^ (flatten_strings ss)

(********************************************************************)

type xp =
| Var of string
| App of xp * xp
| Abs of string * xp
| Let of string * xp * xp

let rec xp_to_string: xp -> string =
function e -> match e with
| Var(s0) -> s0
| App(e0,e1) ->
let s0 = xp_to_string e0 in
let s1 = xp_to_string e1 in
"(" ^ s0 ^ " " ^ s1 ^ ")"
| Abs(s0,e1) ->
let s1 = xp_to_string e1 in
"(\\" ^ s0 ^ " -> " ^ s1 ^ ")"
| Let(s0,e1,e2) ->
let s1 = xp_to_string e1 in
let s2 = xp_to_string e2 in
"(let " ^ s0 ^ " = " ^ s1 ^ " in " ^ s2 ^ ")"

let rec xp_eq: xp -> xp -> bool =
function e0 -> function e1 -> match e0,e1 with
| Var(s0), Var(s1) -> compare s0 s1 == 0
(* XXX *)
| _, _ -> false

(********************************************************************)

type tp =
| TVar of string
| TConst of string
| TArrow of tp * tp
| TScheme of tp list * tp

let rec tp_to_string: tp -> string =
function t -> match t with
| TVar(s) -> s
| TConst(s) -> s
| TArrow(t0,t1) ->
let s0 = tp_to_string t0 in
let s1 = tp_to_string t1 in
"(" ^ s0 ^ " -> " ^ s1 ^ ")"
| TScheme(tt, t) ->
let s0 = flatten_strings (list_map tp_to_string tt) in
let s1 = tp_to_string t in
"(A " ^ s0 ^ " . " ^ s1 ^ ")"

let rec tps_to_string: tp list -> string =
function tt -> match tt with
| [] -> ""
| [t] -> tp_to_string t
| (t::tt) -> tp_to_string t ^ ", " ^ tps_to_string tt

let rec tp_eq: tp -> tp -> bool =
function t0 -> function t1 -> match (t0, t1) with
| TVar(s0), TVar(s1) -> compare s0 s1 == 0
| TConst(s0), TConst(s1) -> compare s0 s1 == 0
| TArrow(t0,t1), TArrow(t2,t3) -> tp_eq t0 t2 && tp_eq t1 t3
| TScheme(tt0,t1), TScheme(tt2,t3) -> false
| _, _ -> false

let rec tp_freevars: tp -> tp list =
function tp -> match tp with
| TVar(s) -> [tp]
| TConst(s) -> []
| TArrow(t0,t1) -> list_union tp_eq (tp_freevars t0) (tp_freevars t1)
| TScheme(tt, t) -> list_difference tp_eq (tp_freevars t) tt

(********************************************************************)

type subs = (tp * tp) list

let sub_to_string: (tp * tp) -> string =
function (t0, t1) ->
"[" ^ tp_to_string t0 ^ " := " ^ tp_to_string t1 ^ "]"

let rec tp_sub_one: tp -> tp -> tp -> tp =
function t0 -> function t1 -> function t2 ->
if tp_eq t0 t2 then t1 else
match t2 with
| TVar(s1) -> t2
| TConst(s) -> t2
| TArrow(tl,tr) ->
TArrow(tp_sub_one t0 t1 tl, tp_sub_one t0 t1 tr)
| TScheme(tt, t) ->
if list_member tp_eq tt t0 then t2
else TScheme(tt, tp_sub_one t0 t1 t)

let rec tp_sub: subs -> tp -> tp =
function ss -> function t0 -> match ss with
| [] -> t0
| ((s,t)::ss) -> tp_sub_one s t (tp_sub ss t0)

let sub_sub: (tp * tp) -> (tp * tp) -> (tp * tp) =
function (t0, t1) -> function (t2,t3) ->
(tp_sub_one t0 t1 t2, tp_sub_one t0 t1 t3)

let rec subs_sub: subs -> subs =
function ss -> match ss with
| [] -> []
| (s::ss) -> (s::list_map (sub_sub s) (subs_sub ss))

(********************************************************************)

let free_tick: int ref = ref 0

let tp_fresh_var: unit -> tp =
function _ ->
let n = !free_tick in
(free_tick := n + 1; TVar("v#" ^ (string_of_int n)))

let generalize_free: tp -> tp =
function t -> TScheme(tp_freevars t, t)

let generalize: tp list -> tp -> tp =
function tt -> function t ->
let tt = list_difference tp_eq (tp_freevars t) tt in
if list_eq tp_eq tt [] then t else
TScheme(tt, t)

let rec instantiate: tp -> tp =
function t -> match t with
| TScheme([], t) -> t
| TScheme(t0::tt, t) ->
instantiate (TScheme(tt, tp_sub [(t0, tp_fresh_var())] t))
| _ -> t

(********************************************************************)

exception XXX of string

let rec tp_occurs: tp -> tp -> bool =
function t0 -> function t1 ->
if tp_eq t0 t1 then true else
match t1 with
| TVar(s1) -> false
| TConst(s) -> false
| TArrow(tl,tr) -> tp_occurs t0 tl || tp_occurs t0 tr
| TScheme(tt, t) ->
if list_member tp_eq tt t0 then false
else tp_occurs t0 t

let rec tp_mgu: tp -> tp -> subs =
function t0 -> function t1 -> match (t0,t1) with
| TVar(s), _ ->
if tp_occurs t0 t1 then
raise (XXX("occurs check failed on " ^ tp_to_string t0 ^ " " ^ tp_to_string t1))
else
[(t0, t1)]
| _, TVar(s) ->
tp_mgu t1 t0
| TConst(s0), TConst(s1) ->
if string_eq s0 s1 then [] else
raise (XXX("cannot unify constants " ^ tp_to_string t0
^ " " ^ tp_to_string t1))
| TArrow(t0, t1), TArrow(t2, t3) ->
let ss0 = tp_mgu t0 t2 in
let ta = tp_sub ss0 t1 in
let tb = tp_sub ss0 t3 in
let ss1 = tp_mgu ta tb in
ss0 ++ ss1
| _, _ ->
raise (XXX("no unification rule for " ^ tp_to_string t0
^ " " ^ tp_to_string t1))

(********************************************************************)

type prop = Eq of tp * tp
| Sub of tp * tp list * tp
| In of tp * tp


let prop_to_string: prop -> string =
function p -> let t = (match p with
| Eq(t0,t1) ->
tp_to_string t0 ^ " == " ^ tp_to_string t1
| Sub(t0, m, t1) ->
tp_to_string t0 ^ " <" ^
tps_to_string m ^ "< " ^
tp_to_string t1
| In(t0, t1) ->
tp_to_string t0 ^ " <= " ^ tp_to_string t1)
in "[" ^ t ^ "]"

let prop_activevars: prop -> tp list =
function p -> match p with
| Eq(t0,t1) ->
list_union tp_eq (tp_freevars t0) (tp_freevars t1)
| Sub(t0, m, t1) ->
list_union tp_eq (tp_freevars t0)
(list_intersection tp_eq m (tp_freevars t1))
| In(t0, t1) ->
list_union tp_eq (tp_freevars t0) (tp_freevars t1)

let rec props_activevars: prop list -> tp list =
function pp -> match pp with
| [] -> []
| p::pp -> list_union tp_eq (prop_activevars p)
(props_activevars pp)

let prop_sub: (tp * tp) list -> prop -> prop =
let m_sub: (tp * tp) list -> tp list -> tp list =
function ss -> function m ->
let m = list_map (tp_sub ss) m in
let m = list_map tp_freevars m in
let m = list_flatten m in
m
in
function ss -> function p -> match p with
| Eq(t0,t1) -> Eq(tp_sub ss t0, tp_sub ss t1)
| Sub(t0, m, t1) -> Sub(tp_sub ss t0, m_sub ss m, tp_sub ss t1)
| In(t0, t1) -> In(tp_sub ss t0, tp_sub ss t1)

(********************************************************************)

let rec ass_remove: xp -> (xp * tp) list -> (xp * tp) list =
function e0 -> function l -> match l with
| [] -> []
| ((e1,t)::l) ->
if xp_eq e0 e1 then ass_remove e0 l
else (e1,t)::(ass_remove e0 l)

let rec ass_types: xp -> (xp * tp) list -> tp list =
function e0 -> function l -> match l with
| [] -> []
| ((e1,t)::l) ->
if xp_eq e0 e1 then t::ass_types e0 l
else ass_types e0 l

let rec prop_bu: tp list -> xp -> ((xp * tp) list * prop list * tp) =
function m -> function e -> match e with
| Var(s0) ->
if compare s0 "true" == 0 then
([], [], TConst("bool"))
else if compare s0 "false" == 0 then
([], [], TConst("bool"))
else if compare s0 "0" == 0 then
([], [], TConst("int"))
else
let t = tp_fresh_var () in
([(e,t)], [], t)
| App(e0,e1) ->
let t = tp_fresh_var () in
let (a0,c0,t0) = prop_bu m e0 in
let (a1,c1,t1) = prop_bu m e1 in
(a0 ++ a1, c0 ++ c1 ++ [Eq(t0, TArrow(t1, t))], t)
| Abs(s0,e0) ->
let t = tp_fresh_var () in
let (a0,c0,t0) = prop_bu (m++[t]) e0 in
let a1 = ass_remove (Var(s0)) a0 in
let tt = ass_types (Var(s0)) a0 in
let c1 = list_map (fun t1 -> Eq(t, t1)) tt in
(a1, c0 ++ c1, TArrow(t,t0))
| Let(s0,e0,e1) ->
let (a0,c0,t0) = prop_bu m e0 in
let (a1,c1,t1) = prop_bu m e1 in
let a2 = ass_remove (Var(s0)) a1 in
let tt = ass_types (Var(s0)) a1 in
let c2 = list_map (fun t -> Sub(t, m, t0)) tt in
(a0 ++ a2, c0 ++ c1 ++ c2, t1)

let prop_active: prop -> prop list -> bool =
function p -> function pp -> match p with
| Sub (t0,m,t1) ->
let ss0 = tp_freevars t1 in
let ss1 = list_difference tp_eq ss0 m in
let ss2 = props_activevars pp in
let ss3 = list_intersection tp_eq ss1 ss2 in
not (list_eq tp_eq ss3 [])
| _ -> false

let rec props_split: tp list -> prop list
-> (prop * prop list) option =
function av -> function pp -> match pp with
| [] -> None
| (Eq (t0,t1)::pp) -> Some(Eq(t0,t1), pp)
| (In (t0,t1)::pp) -> Some(In(t0,t1), pp)
| (Sub (t0,m,t1)::pp) ->
(* (FV(t1) - M) \inter activevars(C) == {} *)
let ss0 = tp_freevars t1 in
let ss1 = list_difference tp_eq ss0 m in
let ss2 = list_intersection tp_eq ss1 av in
if list_eq tp_eq ss2 [] then
Some(Sub(t0,m,t1), pp)
else
let ps = props_split av pp in
match ps with
| None -> None
| Some(p,pp) -> Some(p,Sub(t0,m,t1) >+ pp)

let rec solve: prop list -> subs =
function pp ->
let _ = print_string "solving: " in
let _ = list_map print_string (list_map prop_to_string pp) in
let _ = print_newline () in
let sp = props_split (props_activevars pp) pp in
match sp with
| None -> []
| Some(p,pp) ->
match p with
| Eq (t0,t1) ->
let ss = tp_mgu t0 t1 in
solve (list_map (prop_sub ss) pp) ++ ss
| Sub (t0,m,t1) ->
solve (In(t0, generalize m t1)::pp)
| In (t0,t1) ->
solve (Eq(t0, instantiate t1)::pp)

let stars = "************************************" ^ "
**********************************\n"
let xp_props: xp -> unit =
function e ->
let (a,c,t) = prop_bu [] e in
let _ = print_string stars in
let _ = print_string "term: " in
let _ = print_string (xp_to_string e) in
let _ = print_newline () in
let _ = print_string "constraints: " in
let _ = list_map print_string (list_map prop_to_string c) in
let _ = print_newline () in
let ss = solve c in
let _ = print_string "substitutions: " in
let _ = list_map print_string (list_map sub_to_string ss) in
let _ = print_newline () in
let ss = subs_sub ss in
let _ = print_string "unfolded substitutions: " in
let _ = list_map print_string (list_map sub_to_string ss) in
let _ = print_newline () in
let _ = print_string "derived type: " in
let _ = print_string (tp_to_string t) in
let _ = print_newline () in
let _ = print_string "type: " in
let _ = print_string (tp_to_string (tp_sub ss t)) in
let _ = print_newline () in
let _ = print_string stars in
()

(********************************************************************)

let e0 = Abs("m", Let("y", Var("m"), Let("x", App(Var("y"),
Var("true")), Var("x"))))
let e1 = Let("id", Abs("x", Let("y", Var("x"), Var("y"))),
App(Var("id"), Var("id")))
let e2 = Let("id", Abs("x", Let("y", Var("x"), Var("y"))),
App(Var("id"), Var("true")))

let _ = xp_props e0
let _ = xp_props e1
let _ = xp_props e2



8/30/07

One Intelligent Home



The EU-IST funded Amigo project develops an open service oriented middleware architecture for context-aware networked home environments.

8/29/07

How to Win Friends and Influence People

The 1937 classic self-help book by Dale Carnegie. You can find the ebook now for free on the net, if you look hard enough.


Fundamental Techniques in Handling People:

  • "Don't criticize, condemn or complain."

  • "Give people a feeling of importance; praise the good parts of them."

  • "Get the other person to do what you want them to by arousing their desires."


Six Ways to Make People Like You:

  1. "Become genuinely interested in other people."

  2. "Smile."

  3. "Remember that a man's name is to him the sweetest and most important sound in any language."

  4. "Be a good listener. Encourage others to talk about themselves."

  5. "Talk in the terms of the other man's interest."

  6. "Make the other person feel important and do it sincerely."


Twelve Ways to Win People to Your Way of Thinking:

  1. "Avoid arguments."

  2. "Show respect for the other person's opinions. Never tell someone they are wrong."

  3. "If you're wrong, admit it quickly and emphatically."

  4. "Begin in a friendly way."

  5. "Start with questions the other person will answer yes to."

  6. "Let the other person do the talking."

  7. "Let the other person feel the idea is his/hers."

  8. "Try honestly to see things from the other person's point of view."

  9. "Sympathize with the other person."

  10. "Appeal to noble motives."

  11. "Dramatize your ideas."

  12. "Throw down a challenge."


Nine Ways to Change People Without Giving Offense or Arousing Resentment:

  1. "Begin with praise and honest appreciation."

  2. "Call attention to other people's mistakes indirectly."

  3. "Talk about your own mistakes first."

  4. "Ask questions instead of giving direct orders."

  5. "Let the other person save face."

  6. "Praise every improvement."

  7. "Give them a fine reputation to live up to."

  8. "Encourage them by making their faults seem easy to correct."

  9. "Make the other person happy about doing what you suggest."




At first thought I would think it was unethical. But the tips just sound like totally normal behavior to me...

8/28/07

Your Brain is Badly Wired

Enjoy it... Another TED talk by Al Seckel.



I want to test the dolphins on my children.

8/26/07

Image Resizing Done Different

Productivity of a Sysadmin



I was reading slashdot and saw this definition of productivity of a system administrator.


Hours Worked Fixing Problems divided by Hours Worked Doing Routine Work


I guess it is not an original one, since it generalizes too easily. Still, very worth-while number. (Cartoon by XKCD.com)

Wireless Sensor Networks

I am (co-)designing a semester around wireless sensor networks and ubiquitous computing.



Designing wireless sensor networks is a great engineering challenge for it is the application which drives the design of the hardware back up to the software.

The Internet connected our offices and homes, WSNs will connect our world as we use it. It is hard to see what lies ahead in the future but we will see a lot of these (I expect first in phones and cars) in the coming twenty to fifty years.

Post-Minoan Crete

Ineffability Defined

8/25/07

Love Will Tear Us Apart



The great artist Ian Curtis in the first feature-length film "Control" of Dutch pop-photographer Anton Corbijn. (Dutch interview, BBC review, V Magazine interview)

"Love will tear us apart" is the song which lead to the first hit of Joy Division and the subsequent death of Ian Curtis one month later. It is engraved on his tombstone.

The Paradox of Choice

Another TED talk by Barry Schwartz. Lots of good quotes in this one.




Quotes: "Everything was better when everything was worse," and "The secret to happiness is: Low Expectations," and "Everybody needs a fishbowl."

But best, the conclusion, the official dogma "More freedom, more choice, makes people happier" ain't true. Well, at least, according to this guy.

8/24/07

Visualizing Concepts in Satisfiability

My long-time, sometimes forgotten, love.



From Visualizing Concepts in Satisfiability. And another note to self, read up on this.

Sometimes, although we don't like it, stuff gets gory.

8/23/07